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Abstract 
 

 

 
 

 In this report we describe our analysis of the influence of sea clutter non 

stationarity on the clutter covariance matrix estimation and its impact on the CFAR 

property of the normalized adaptive matched filter (NAMF). Three estimators have been 

considered in the analysis, i.e. the sample covariance matrix (SCM), the normalized 

sample covariance matrix (NSCM), and the fixed point (PF) estimators. The impact of non-

stationarity, that emerges in the statistical analysis of the HH and VV polarized data, is 

measured in terms of differences between NAMF nominal probability of false alarm (PFA) 

and probability of detection (PD), and estimated ones measured by processing real clutter 

data recorded by the IPIX radar. 
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1. Introduction 

 To mitigate the deleterious effects of clutter and jammer, modern radars have adopted 

adaptive processing techniques such as constant false alarm rate (CFAR) detectors, 

adaptive arrays, and space time adaptive processing (STAP) (see for instance [Kel86], 

[Him98], [Kra05], [Mel96], [Mel97], [Ran04], [Ric96], [War94], and reference therein). In 

a typical adaptive radar system, the disturbance covariance matrix is estimated using 

secondary data, namely returns from range cells spatially close to the cell under test (CUT) 

and sharing the same spectral properties [Kel86]. In practice, these techniques are very 

restrictive because they require the environment to “remain stationary and homogenous” 

during adaptation, which is not always the case. In fact, the secondary data are often 

contaminated by interfering targets, large discrete and spiky clutter and other outliers of 

different types making them non-homogenous. The deleterious impact of this kind of non-

homogeneity on the detection performances is widely reported in the literature and several 

solutions have been proposed [Ger02], [Ran05]. However, another kind of non-

homogeneity is caused by the non-stationary nature of the clutter which also has a harmful 

effect on the radar performances. Recent works on real data revealed that the sea clutter is 

a non stationary process [Hay02], [Gre04]. Here, we propose to analyze this effect and its 

impact on CFAR behavior of one of the mostly used adaptive radar detector, the 

Normalized Adaptive Matched Filter (NAMF). 
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2. Background 

 The problem of radar detection in non Gaussian sea clutter has received considerable 

attention in recent past and currently, a substantial bulk of work is available in the open 

literature about this topic [Con94], [Con95], [Gin97]. Experimental data as well as 

physical and theoretical arguments indicate that the clutter can generally be modeled as a 

compound-Gaussian process and also show that a satisfactory fit of the clutter amplitude 

probability density function (apdf) at low grazing angles can be achieved through families 

of distributions containing a shape parameter in addition to the scale one [Far97], 

[Con02b], [Gre07]. Among these, the most commonly adopted are the Weibull and K 

distributions, that are particular cases of the compound-Gaussian family.  

 Conventional radar detectors, namely those designed to detect targets embedded in 

Gaussian clutter, show considerable performance degradation in the presence of impulsive 

noise, even in the case of perfect knowledge of the clutter distribution parameters [Con94]. 

Optimized detection structures have been proposed and assessed with reference to coherent 

pulse trains embedded in Weibull or K distributed clutter with known spectral properties. 

However, implementation of these detection structures requires knowledge of clutter 

statistics up to the relevant distribution parameters, which is clearly unrealistic in practical 

situations. Thus, one is interested in canonical receivers, namely, decision statistics 

functionally independent of the clutter distribution parameters (under the noise-only 

hypothesis) and whose detection threshold is itself independent of the clutter statistics. A 

first step towards this task is the receiver introduced in [Con95], called the normalized 

matched filter (NMF) which ensures the CFAR property with respect to clutter distribution 

(in the family of compound-Gaussian models). This detector has also been derived 

assuming Gaussian disturbance; Kraut et alii in [Kra05] demonstrated that it is the GLRT 

and Uniformly-Most-Powerful-Invariant test for detecting a target, know up to a 

multiplicative factor, in Gaussian noise whose covariance matrix is known but whose 

power level is unknown. Hence, in order to come up with completely adaptive detection 

structures against a background of compound-Gaussian clutter, it is necessary to replace in 

the NMF the covariance matrix with a suitable estimate. The detector obtained is called the 

Normalized Adaptive Matched Filter (NAMF) [Ran05].  

 Several estimators have been proposed to estimate the covariance matrix from 

secondary data collected from cells surrounding the cell under test. Hereafter, we will 
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briefly review the mostly used in practice. All these estimators are based on the hypothesis 

that the secondary vectors do not contain interference or targets and share the same 

covariance matrix as the primary data, the cell under test (CUT) under the null hypothesis.  

 Before introducing the most popular covariance matrix estimators, it is useful to refer to 

the problem in its entirety. Thus, the problem of detecting a target signal in additive clutter 

can be posed in terms of the following binary test: 

 

   (1) 0

1

1, ,:      
     

1, ,:
i i

i i

i KH
i KH

= ==⎧
⎨ = == +⎩

z cz c
z cz s c

…
…

 

where z, s and c are the N-dimensional complex vectors of the samples from the baseband 

equivalents of the received signal, the target and the clutter in the CUT respectively. The 

set of z1, z2,..., zK denote the N-dimensional secondary vectors assumed free of signals and 

interferences. The useful signal s can be modeled as α=s p  where p is the target steering 

vector and α  is an unknown parameter accounting for the channel propagation effect and 

the target radar cross section. Under the hypothesis of compound-Gaussian clutter each 

vector  and c can be modeled as  ic

 

  i i iτ=c x , τ=c x , 

 

where { }1, , , Kx x x…  is a sequence of independent, identically distributed (IID), complex, 

zero-mean, circular symmetric Gaussian vectors (speckle) with unit power and finite, 

positive definite covariance matrix, in short notation ( ), ,∈x x 0 Mi xCN . iτ  and τ  (texture) 

are real, non-negative, random variables independent of xi and x.  

 Finally, for future convenience, we report here the general structure of the NAMF test: 

 

  
( ) ( )

0

1
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1 1

ˆ

ˆ ˆ

H
H

H H H
λ

−

− −

s M z

s M s z M z
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where  is any estimate of M based upon the secondary vectors, namely: M̂
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  1
ˆ ˆ ( , , )K=M M z z…  (3) 

 

and { }2

1
=

MM ccH cE 2=
σ σ

 is the covariance matrix of the clutter normalized with respect 

to its power. 
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3. Covariance matrix estimators 

 In this paragraph we describe three of the most popular estimators of the clutter 

covariance matrix. 

 

a) Sample covariance matrix: SCM.  

It is an estimator of M  and it is given by: c

 

  (
1 1

1 1ˆ
K K

)H H
SCM i i i i i

i iK K
τ

= =

= =∑ ∑M z z x x . (4) 

 

Plugging the  into (2) we obtain a detector that is CFAR only with respect to  

and whose probability of false alarm (PFA) strongly depends on the distribution of the 

texture [Gin02], [Con02a], [Con02c]. The estimator (4) is ML when the clutter is Gaussian 

distributed, then when the texture values 

ˆ
SCMM Mc

iτ  are all equal and deterministic. It is also the 

ML estimator when the iτ  are random but completely correlated, i.e. 1 Kτ τ τ== =…  

[Ric96]. The performance of this matrix estimator in presence of compound-Gaussian 

clutter has been investigated in [Gin99]. 

 

b) Normalized sample covariance matrix: NSCM.  

It is an estimator of  and it is given by: M

 

  
1 1

ˆ
H HK K

i i i i
NSCM H

i ii i i i

N N
K K= =

= =∑ ∑z z x xM
z z x xH  (5) 

 

It is very similar to the SCM estimate but it uses normalized secondary data, then its 

distribution does not depend on the texture pdf but only on the speckle distribution. 

Plugging the  into (2) we obtain a detector that is CFAR with respect to the 

statistics of the texture and to the clutter power. Unfortunately the normalization with 

respect to 

ˆ
NSCMM

H
i i Nz z  makes the NAMF detector no longer CFAR with respect to M [Gin02], 
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[Con02a], [Con02c]. The performance of the NSCM matrix estimator in presence of 

compound-Gaussian clutter has been investigated in [Gin99] and [Bau07]. 

 

c) Fixed point and maximum likelihood estimator 

 The fixed point estimator (FPE) arises as an approximation of the ML estimation 

[Gin02] (it has been termed FPE in [Pas07]). It is defined as a fixed point of the function: 

 

  ,
1

1

                   
: HK

K i i
H

i i i

f N
K −

=

→⎧
⎪
⎨ →⎪
⎩

∑M z zA
z A z

D D
 (6) 

 

where { }( ) , positivedefiniteH
NM∈ =A A A AD =  with ={  matrices with 

elements in }. As shown in [Pas07], equation 

( )NM N N×

( )M̂,
ˆ

Kf= MM  has a solution of the form 

αM , where α  is an arbitrary scaling factor. The only solution  satisfying the 

normalization  is called the Fixed Point (FP) estimate, .  

M̂

ˆ
FPM( )1 ˆ N− =M MTr

In other words,  is the unique solution of  ˆ
FPM

 

  
1

1 1

ˆ
ˆ

H HK K
i i i i

FP H H
i ii FP i i FP

N N
K K−

= =

= =∑ ∑z z x xM
z M z x M x1ˆ

i
−

 (7) 

 

satisfying . Notice that  does not depend on the texture values ( )1 ˆ
FPTr N− =M M ˆ

FPM iτ . 

This property is of great importance in practice. As verified in [Pas07], the FP is the ML 

estimate when the texture is assumed to be an unknown deterministic parameter and an 

Approximate Maximum Likelihood (AML) estimate when the texture is assumed to be a 

non negative random variable [Gin02]. 

 To find the FP solution, we must resolve the transcendental equation (7). In [Gin02] the 

authors developed an iterative algorithm to calculate this solution in the case of random 

texture. The iterative algorithm is given by the following equation  
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1

1

ˆ ( 1) ˆ ( )

HK
i i

H
i i i

Nk
K k −

=

+ = ∑ z zM
z M z

 (8) 

 

where k is the kth iteration. A deep analysis of this algorithm and its convergence rate as a 

function of the number of secondary vectors K, the number of pulses N, and the shape of 

the clutter covariance function can be found in [Gin02] and [Pas07]. Generally the number 

of iterations Nit necessary to guarantee the convergence is small (say 2 or 3). In [Gin02] it 

was also verified by simulation that the NAMF that uses the AML matrix estimator is 

almost insensitive to the shape of the covariance matrix, then it can be considered CFAR 

with respect to the texture distribution and very robust with respect to the covariance 

matrix. In [Con02c] the authors proved that if the clutter spectrum is symmetric about the 

frequency f=0 and the initialization matrix of the iterative procedure (8) is done by 

 

  
( )

(1) (1)
(0)

(2) (2)
1

1 TK
i i

T
i i i kk

K =

= ∑ z zΣ
z z

 (9) 

 

where  and  are the real and imaginary part of the complex vector  respectively, 

and  is the (i,i)th element of the 

(1)
iz

kk

(2)
iz iz

A N N×  matrix A, then the NAMF is CFAR also with 

respect to M. This is not true if the spectrum is not symmetrically shaped around f=0, as it 

is always in sea clutter scenarios. 
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4. Statistical data analysis  

 The goal of this technical report is to investigate the CFAR property of the NAMF 

detector of eq. (2) with respect to the covariance structure and the texture statistics using 

each of the three matrix estimators reviewed in the previous paragraph in real sea clutter 

data, recorded by the IPIX radar. Table 1 shows the specifications of the analyzed files 

19980223_165836_antstep, 19980227_213016_antstep and 19980227_213808_antstep.  

 The number of range cells for the file 19980223_165836_antstep is 34, but 

unfortunately, the last 5 (30-34) contain a target (maybe a small object floating on the 

waves), then only 29 cells can be considered in our analysis. In the other files there is not 

target and the range cells are 28. 

   

 
Name of the 

data set 
19980223_165836_antstep 19980227_213016_antstep 19980227_213808_antstep 

Date, time of 
acquisition 

23/02/1998  16:58:36 27/02/1998  21:30:16 27/02/1998  21:38:08 

#Range cells 34 28 28 
Start range 3201 m??   

Range 
resolution 

30 m 30 m 15 m 

Pulse width 200 ns 200 ns 100 ns 
Total # 
sweep 

60000 60000 60000 

Sample for 
cell 

60000 
Sampled at 30 m 

60000 
Sampled at 30 m 

60000 
Sampled at 15 m 

PRF 1 KHz 1 KHz 1 KHz 
Frequency 

RF 
9.39 GHz 9.39 GHz 9.39 GHz 

Radar and 
wave 

geometry 

N 

 
S 

N 

 
S 

N 

 
S 

 

Table 1 - Characteristics of the analyzed files. 
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 The data have been previously processed in order to remove the dc offset and the phase 

imbalance due to hardware imperfections and then stored in an tN Nc×  complex matrix. A 

detailed statistical analysis of adopted real data has been performed as in [Gre06] and in 

[Gin06]. The results have shown a reasonable fit of the data to the K model.  

 The shape parameter ν  is not constant on all the range cells. In Figs.1-3 we show the 

estimated values for VV and HH data for the three files. As expected the values of ν  for 

the HH data are always lower than that for the VV data, then the HH polarization is spikier 

than the VV. The ratio between the ν  parameters of the VV data and the HH data is close 

to 0.9 for each cell and each analyzed file. The mean value of ν  for the VV data and HH 

data are reported in table 2. The spikiest data are those of file 19980227_213016_antstep. 

 

File name VV HH 
19980223_165836_antstep 0.7563 0.4355 
19980227_213016_antstep 0.6434 0.3981 
19980227_213808_antstep 1.0046 0.5141 

Table 2 - νmean for the analyzed files. 
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Fig. 1 – File 19980223_165836_antstep. 
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Fig. 2 – File 19980227_213016_antstep. 
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Fig. 3 – File 19980227_213808_antstep. 
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5. Spectral analysis  

 We estimated also the powers spectral density (PSD) of the clutter in each range cell by 

means of Welch modified periodogram with rectangular windows of 256 samples and an 

overlap of 50 %. The results are reported in Figs. 4 and 5 for the 1st file 

(19980223_165836_antstep), where the periodogram normalized with respect to the 

estimated power for the 29 cells is plotted in a color scale from blue to red, as a function of 

the number of cell and the normalized (with respect to the radar PRF) frequency. The 

spatial non stationarity of the clutter is evident, the PSD varies from cell to cell. The peak 

of the PSD is generally between f=0.05 and f=0.1, as verified also in Fig. 6 where the 

average PSD is reported for both polarizations. The average PSD has been calculated as 

the mean of the periodograms estimated on the 29 cells.  

We obtain similar results for the 2nd and the 3rd files as shown in Figs. 7-9 for file 

19980227_213016_antstep and Figs.10-12 for file 19980227_213808_antstep. 

 
Fig. 4 – PSD of sea clutter as a function of range cell number, VV data, 1st file. 
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Fig. 5 – PSD of sea clutter as a function of range cell number, HH data, 1st file. 
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Fig. 6 – Average PSD of sea clutter, 1st file. 
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Fig. 7 – PSD of sea clutter as a function of range cell number, VV data, 2nd file. 

 
Fig. 8 – PSD of sea clutter as a function of range cell number, HH data, 2nd file. 
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Fig. 9 – Average PSD of sea clutter, 2nd file.  

 
Fig. 10 – PSD of sea clutter as a function of range cell number, VV data, 3rd file. 
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Fig. 11 – PSD of sea clutter as a function of range cell number, HH data, 3rd file. 
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Fig. 12 – Average PSD of sea clutter, 3rd file.  
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 To complete the spectral analysis, we calculated also the spectrogram of the data for 

each range cell as in [Gin06]. For the 1st file we show here only the results for the 11th cell, 

in Figs. 13 and 14 for VV and HH data respectively. In both the polarizations the behavior 

is similar and some temporal periodicities are apparent, particularly in the ranges 5-20 sec 

and 35-50 sec. Again the temporal non-stationary behavior of the sea clutter is evident. 

 For the 2nd file we report in this section the results for the 1st, 4th and 11th range cell in 

Figs. 15-20. For the 3rd file we report the 7th, 13th and 27th in Figs. 21-25 for both 

polarizations. Also in these two files the temporal non-stationarity is apparent. 

 

 
Fig. 13 – Spectrogram of sea clutter, 11th cell, VV data, 1st file. 
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Fig. 14 – Spectrogram of sea clutter, 11th cell, HH data, 1st file. 

 
Fig. 15 – Spectrogram of the 1st cell, VV data, 2nd file. 
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Fig. 16 – Spectrogram of the 1st cell, HH data, 2nd file. 

 
Fig. 17 – Spectrogram of the 4th cell, VV data, 2nd file. 
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Fig. 18 – Spectrogram of the 4th cell, HH data, 2nd file. 

 
Fig. 19 – Spectrogram of the 11th cell, VV data, 2nd file.  
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Fig. 20 – Spectrogram of the 11th cell, HH data, 2nd file.  

 
Fig. 21 – Spectrogram of the 7th cell, VV data, 3rd file.  
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Fig. 22 – Spectrogram of the 7th cell, HH data, 3rd file.  

 
Fig. 23 – Spectrogram of the 13th cell, VV data, 3rd file.  
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Fig. 24 – Spectrogram of the 13th cell, HH data, 3rd file.  

 
Fig. 25 – Spectrogram of the 27th cell, VV data, 3rd file.  
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Fig. 26 – Spectrogram of the 27th cell, HH data, 3rd file.  

 
 
 

 

 Summarizing our results on the statistical analysis on sea clutter file we can state that: 

 

1. The sea clutter show a good fit to K model but the shape parameter of the distribution 

changes from cell to cell. 

2. The speckle PSD is not constant in time and space, so the clutter is not spatially and 

temporally stationary. The spectrogram evidences some temporal periodicity in 

spectrum PSD behavior. 

 

 The aim of the analysis described in the following sections is to verify and measure the 

impact of these spatially and temporally non-stationarity on the CFARness and in general 

on the performance of the NAMF. 
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6. Performance analysis and CFAR property  

 The procedure used to assess the performances is now described. We consider an 

 data window, where N is the number of pulses and K the number of secondary 

cells, the primary cell (CUT) is set in the middle of the window. The data window is slid in 

space from range bin to range bin and in time with an overlap of 50 % (N/2 samples) until 

the end of the dataset. The overall number of trials is: 

( 1N K× + )

 

( ) ( )2
= 1

2
s

trials c

N N
N N

N
−

K− − , 

 

where Ns=60000 and Nc=29. Moreover, for evaluating the performance of the NAMF, we 

set N=8 and K=16. The steering vector of the signal is: 

 

( ) ( )( )1,exp 2 , ,exp 2 1
T

D Dj f j N fπ π⎡ ⎤= −⎣ ⎦p … , 

 

where Df  is the normalized Doppler frequency of the target.  

 In analyzing the behavior of the NAMF with the real data our aim is to highlight the 

impact of clutter non-stationarity on the false alarm rate (FAR). As written in Section 3, we 

know that:  

(i) the NAMF with the SCM is CFAR with respect to Mc and to M, but not with respect 

to the statistics of the texture; 

(ii) the NAMF with the NSCM is CFAR with respect to the statistics of the texture, but 

not with respect to M; 

(iii) the NAMF with the FP is CFAR with respect to the statistics of the texture, and 

very robust with respect to M.  

 Then, to set the threshold for a nominal probability of false alarm 1
0 10FAP −=  and 

 in the NAMF with each of the three matrix estimators, we generated K-

distributed clutter with covariance matrix equal to the average covariance matrix of the real 

data and with shape parameter equal to the estimated 

2
0 10FAP −=

meanν . The average covariance matrix 

has been built based on the estimated correlation as: 
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where  in the nth sample of the kth range cell on the clutter complex envelope.( )kz n 1 

Running Monte Carlo simulation with this simulated data for different values of the target 

Doppler frequency fD, we observed that, even if the NAMF-NSCM and the NAMF-FP are 

not CFAR with respect to M, the nominal threshold shows very small variations as 

function of fD and it can be practically considered constant. The nominal thresholds are 

reported in Table 3 for the 1st file. 

 

 

 PFA=10-1 PFA=10-2 

SCM 0.537 0.760 

NSCM 0.460 0.682 

FP 0.485 0.712 

 
Table 3a – NAMF threshold values, N=8, K=16, VV data 

 

 PFA=10-1 PFA=10-2 

SCM 0.604 0.816 

NSCM 0.456 0.680 

FP 0.484 0.710 

 
Table 3b – NAMF threshold values, N=8, K=16, HH data 

 

 

 After setting the nominal thresholds we estimated by Monte Carlo simulation the 

probability of false alarm of the NAMF fed by the real data in both the polarizations. The 

results are shown for the 1st file in Figs. 27-28 for the VV data and Figs. 29-30 for the HH 

data as a function of the target Doppler frequency fD.  

                                                 
1 The mean value for each range cell has been subtracted before processing the data. 
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Fig. 27 – Probability of false alarm with real VV data, N=8, K=16, PFA0=10-1, 1st file. 
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Fig. 28 – Probability of false alarm with real VV data, N=8, K=16, PFA0=10-2, 1st file. 
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Fig. 29 – Probability of false alarm with real HH data, N=8, K=16, PFA0=10-1, 1st file. 
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Fig. 30 – Probability of false alarm with real HH data, N=8, K=16, PFA0=10-2, 1st file. 
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 The differences between nominal and actual PFA are evident, particularly for PFA0=10-2. 

The actual PFA of NAMF-NSCM and NAMF-FP are close to the nominal one only for fD in 

the noise floor of the clutter. When fD is close to the peak of the PSD, the real PFA is higher 

than the nominal one, particularly for PFA0=10-2. On the contrary, the actual PFA of the 

NAMF-SCM is almost always lower than the nominal one. The results are similar for both 

polarizations. It is important to observe that the deviations from the nominal value of the 

PFA are higher in the area of the clutter spectrum in which the variations due to the non-

stationarity of the clutter are greater. The variations of the noise floor are negligible. It is 

the peak of the PSD or the Doppler centroid that moves with the long waves originating the 

almost periodic behavior of the spectrogram as in Figs. 5-6. 

The differences in the NAMF-SCM can be mostly due to the non-stationarity of the shape 

parameter of the K distribution to which the data belong, more than to the non-stationarity 

of the covariance matrix. The SCM is particularly sensitive to the clutter texture 

probability density function. 

 Obtaining a PFA that is lower than the nominal one does not mean in general having a 

good result. The performance of the system depends also on the probability of detection. 

To evaluate it, we synthetically generated a Swerling I target, so that the data samples in 

the CUT have the following expression: 

 

  ( )( ) exp 2 ( )Dz n j f n d nα π= +  (12) 

 

for ; 0,1, 1n N= … − α  is a complex Gaussian random variable, i.e. ( 20, )αα σ∈CN , fD is 

the Doppler frequency of the target and d(n) is the clutter. The clutter-to-noise ratio (CNR) 

is defined as 2
d
2SCR ασ σ= . In the simulation with synthetic clutter we set , in the 

test with real data the average power of the clutter has been estimated from the data as 

2 1dσ =

 

  
1
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where Nc is the number of range cells and Nd the number of data per cell. 
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 The results are summarized in the Figs. 31-34 for the 1st file, where we set fD=0. It is 

evident from these figures that the performances of the three detectors are poorer with the 

real non-stationary data than with the simulated stationary clutter. The non-stationarity of 

the clutter influences also the probability of detection of the NAMF.  

 The performances of the NAMF for the 2nd file are summarized in Figs. 35-38. For 

a nominal PFA0=10-1 the estimated PFA of NAMF-NSCM and NAMF-FP are pretty close to 

the theoretical one. This is not true for the NAMF-SCM that exhibits a PFA lower than the 

nominal one. For PFA0=10-2 all the estimated PFA are different from the nominal one. The 

results are similar for both polarizations. From Figs. 39-42, it appear evident that the actual 

PD is always lower that the nominal PD for each detector and matrix estimator. 
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Fig. 31 – Probability of detection, N=8, K=16, PFA0=10-1, VV polarization, 1st file. 
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Fig. 32 – Probability of detection, N=8, K=16, PFA0=10-2, VV polarization, 1st file. 
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Fig. 33 – Probability of detection, N=8, K=16, PFA0=10-1, HH polarization, 1st file. 
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Fig. 34 – Probability of detection, N=8, K=16, PFA0=10-2, HH polarization, 1st file. 
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Fig. 35 – Probability of false alarm with real VV data, N=8, K=16, PFA0=10-1 
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Fig. 36 – Probability of false alarm with real VV data, N=8, K=16, PFA0=10-2 
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Fig. 37 – Probability of false alarm with real HH data, N=8, K=16, PFA0=10-1 
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Fig. 38 – Probability of false alarm with real HH data, N=8, K=16, PFA0=10-2 
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Fig. 39 – Probability of detection, N=8, K=16, PFA0=10-1, VV polarization. 
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Fig. 40 – Probability of detection, N=8, K=16, PFA0=10-2, VV polarization. 
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Fig. 41 – Probability of detection, N=8, K=16, PFA0=10-1, HH polarization. 
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Fig. 42 – Probability of detection, N=8, K=16, PFA0=10-2, HH polarization. 

 
 

 
 We continued our analysis testing the NAMF 19980227_213808_antstep file data. 

In this file the range resolution is 15 m. The PFA and the PD are plotted in Figs. 43-50. 

Surprisingly, the probability of detection for the VV data is pretty close to the nominal one. 

The only difference with the other data is that this VV polarized clutter is less spiky than 

the others in the other two files. We can guess that the non-stationarity have a greater 

weight with spikier data. As a matter of fact, the PD on the HH data shows same behaviour 

than in the previously analyzed files. 
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Fig. 43 – Probability of false alarm with real VV data, N=8, K=16, PFA0=10-1 
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Fig. 44 – Probability of false alarm with real VV data, N=8, K=16, PFA0=10-2 
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Fig. 45 – Probability of false alarm with real HH data, N=8, K=16, PFA0=10-1 
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Fig. 46 – Probability of false alarm with real HH data, N=8, K=16, PFA0=10-2 
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Fig. 47 – Probability of detection, N=8, K=16, PFA0=10-1, VV polarization. 
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Fig. 48 – Probability of detection, N=8, K=16, PFA0=10-2, VV polarization. 
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Fig. 49 – Probability of detection, N=8, K=16, PFA0=10-1, HH polarization. 
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Fig. 50 – Probability of detection, N=8, K=16, PFA0=10-2, HH polarization. 
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7. Conclusions  

 In this technical report we have analyzed HH and VV polarized lake clutter data and we 

have used them to test the performance of the Normalized Adaptive Matched Filter 

(NAMF) detector with the goal of verifying the impact of temporal and spatial non-

stationarity on the detector False Alarm Rate (FAR) and in general on the performance of 

the NAMF adopting different clutter covariance estimators. We applied the sample 

covariance matrix (SCM), the normalized sample covariance matrix (NSCM), and the 

fixed point (FP) matrix estimators. All the known properties of NAMF-SCM, NAMF-

NSCM and NAMF-FP are based on the assumption that the clutter in the primary and 

secondary vectors shares same statistical properties, that is, the clutter is stationary in time 

and space. In real sea clutter scenario, unfortunately, often this is not the case.  

Our statistical analysis shows that: 

1) The sea clutter show a good fit to K model but the shape parameter of the 

distribution changes from cell to cell. 

2) The speckle PSD is no-constant in time and space, so the clutter is not spatially and 

temporally stationary. The spectrogram evidences some temporal periodicity in 

spectrum PSD behavior. 

 To measure the impact of clutter non-stationarity on CFAR property of the NAMF, we 

generated a K clutter with a covariance matrix equal to the average covariance matrix of 

the real data and with a shape parameter equal to the estimated meanν . We performed a 

thorough numerical analysis by processing these simulated data, for different values of the 

target Doppler frequency fD, and we set the threshold for a nominal probability of false 

alarm  and .  1
0 10FAP −= 2

0 10FAP −=

 After setting the nominal thresholds we estimated the probability of false alarm and of 

detection of the NAMF fed by the real data. If the data had same statistical properties of 

the simulated data, the performance of the NAMF with real data and with simulated data 

would be very close. Conversely, in our results we observed large differences in the PFA 

and in the PD, almost always. Most of these differences can be attributed to the spatial and 

temporal non-stationarity of real data that can imply a variation of the PFA of one order of 

magnitude with respect to the nominal one, and of the SCR for a fixed PD of 2-5 dB. The 

impact of the nonstationarity seems to be stronger and stronger with increasing spikiness 

and decreasing PFA.  
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